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Abstract

Using a generalization of the q-commutation relations, we develop a formalism in which

it is possible to define generalized q-bosonic operators. This formalism includes both types

of the usual q-deformed bosons as special cases. The coherent states of these operators show

interesting and novel noise reduction properties including simultaneous squeezing in both

field components, unlike the conventional case in which squeezing is permitted in only one

component. This also contrasts with the usual quantum group deformation which also only
permits one component squeezing.

1 Deformed Commutation Relations

Consider the single particle deformed commutation relation [1]

aa t- f(N)afa = 1 (1)

where a t and a are generalized creation and annihilation operators, N is the number operator such

that NIn ) = nln), f is a real function, and the vacuum [0) is defined by a]0) = 0. We define a

normalized one-particle state by atl0) = ]1). This formalism incorporates the deformation schemes

previously encountered in the literature as special cases.

Examples:

o f(N) = 1.

This is the usual commutation relation of the Heisenberg-Weyl algebra and describes ordi-

nary quantum mechanical bosonic systems such as the the harmonic oscillator.

.

.

f(N) =q.

The so--called q-oscillator, first suggested by Arik and Coon [2]. It has since been studied

in detail by several authors e.g. Jannussis et al [3], Kuryshkin [4], Kulish and Damaskinsky
[5].

_'" J -- q(q_'+a)"
This gives a deformed commutation relation equivalent to that of the q-boson first discovered

by Macfarlane [6] and Biedenharn in connection with the representation theory of quantum
groups.

93



4. This form of deformed commutation relation can also be related to the extensive work

of Bonatsos, Daskaloyannis and others,[7] and refs. therein, on the generalized oscillator

formalism as well as the recent work of Jannussis [8].

Building up normalized eigenstates of the number operator N by repeated application of the

generalized creation operators in (1), we obtain

In)- (at)_-10\ (2)
([n]_)½''

where the function [n] is defined recursively by

[n+ 11= 1+/(n)[n] (3)

with initial condition [0] = 0.

Explicitly, we see

[n] = 1 +/(n-I) + f(n-1)f(n-2)+ f(n-1)f(n-2)f(n-3)

+... + f(n-1)f(n-2).., f(2)f(1) (4)

V2 f(n - 1)! (_)
= _k=0y_)i

The functions In] can be thought of as generalizations of the basic numbers of q-analysis [9]. They

obey a highly non-linear arithmetic but for appropriate choice of the function f, they tend in

some limit to the ordinary integers.

2 Coherent States

Conventional coherent states of the oscillator obeying the undeformed commutation relation

(f(g) = 1) may be defined by
alA>= _IA> (6)

or equivalently

1 exp(_a*)10) (7)
IA)= exp(lA[2)

where the exponentional function, by definition, has the property

d_exp(Ax) = exp(Ax)A (s)

These definitions of (_oherent states have been used to generalize the concept to the cases where

the commutation relations have been deformed.
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Given the q-commutation relation aa t - q ata = 1, we may define coherent states [A/ by

alA) = AIA) (9)

To achieve the alternative definition given by (7), it is necessary to introduce a q-derivative

operator [9], qDx such that

qDxEq(AX) = AEq(Ax) (10)

where Eq(x) is the Jackson q_xponential. When this is done, we see that

1

IA) - Eq(lAl2)Eq(Aat)[0> (11)

The same procedure can also be used to define q-coherent states for the Macfaxlane-Biedenharn

oscillator (although in this case the generalization of the exponential function is different from

that of Jackson).

For [n] (defined by (5)), an analytic function of the variable n, it is possible to extend the above

analysis to the case of bosonic creation and annihilation operators obeying the general commuta-

tion relations (1).

We define an operator Dx such that

Dx=-xl Xdx-x " (12)

This acts as a generalized differential operator

e.g.

Dx x n = [n]x n-1.

The eigenfunctions of D, given by

(13)

oo X n

E(x) = _ In]!" (14)
n_-0

are well-defined provided the function f satisfies the appropriate convergence criteria. If f(n) > 1

as n --_ o0 then E(x) converges for all real values of x. If f(n) < 1 as n --* cx) then convergence is

ensured for a certain range of x dependent on the precise nature of the function f.

Since a E(Aa+)[0> = AE(Aat)[0>, we can use E(x) to define analogues of coherent states as nor-

malized eigenstates of the generalized annihilation operator.

IA>= {E(IAI2)}- E(Aa?)Io> (15)

3 Noise Reduction Properties

We consider conventional (undeformed) bosons.
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The electromagneticfield componentsz and p are given by

1 1

x= _(a+a t ) and p=_-_(a-at).
(16)

As usual, we define the variances (Ax) and (A p) by

(ixx)_= (_) - (_)_ a_d (ap)_ = (p_)- (p)_. (17)

In the vacuum state

and so

1 1

(Az)0= _ and (Ap)o= _. (18)

1

(Ax)0(_Xp)0 = _. (10)

The commutation relation for a and a t leads to the following uncertainty principle

1 1 (20)(_x)(_p) > f([x,p])l= _.

Thus the vacuum state attains the lower bound for the uncertainty, as do the coherent states.

While it impossible to lower the product (Ax)(Ap) below the vacuum uncertainty value, it is

nevertheless possible to define squeezed states [11] for which (at most) one quadrature lies below

it's vacuum value, i.e.

1 1
(Ax) < (ax)0 = _ or (Ap) < (Ap)0 = (21)

v_Vz

If we now consider the generalized bosonic operators given by (1), using the same definitions for

the the field qua_lratures, x and p, as in (16) we find that, just as in the conventional case, the
1 is a lower bound for all number states.vacuum uncertainty product (A x)0(A P)o =

However, unlike the conventional case, it is not a global lower bound.

Consider the quadrature values in eigenstates of the generalized annihilation operator.

Then

and

(x)_ = (A l (at + a)l_)= _(a + i)

: (hi _((_,)_+ a_+ ata + aa t) I_)

: _{(i + _)_+ 1-e_,_lal_}

(22)

(23)

(24)

where

el,x = 1-(f(N + l))_ (25)
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If we choose 0 < f(n) < 1, then it can be shown that _:,_1_1_ _ (0,1) for A within the radius of

convergence of the generalized exponential.

Hence
1

(,_),_: _{l-_:,_,l,Xl_1

Evaluating the variance for the other component, we find that (A p)_ -- (A x)_ so

1
l{l_e/,:,[A[2} <-

However, it can also be shown that

SO

{1 - _:,_l_l_1= _l<[_,pl>_{

1

(:,_)_(:,p)_= 5{<[_,p]>_{

(26)

(27)

(28)

(29)

Thus we see that these generali_ed q-coherent states satisfy a restricted form of the Minimum

Uncertainty Property (M.U.P.) of the conventional coherent states. Additionally we sqe that there

is a general noise reduction in both quadratures compared to their vacuum value. In conventional

coherent states there is no noise reduction relative to the vacuum value. In conventional squeezed

states, there is noise reduction in only one component.

4 Special Cases

We can apply the preceding analysis to the q-deformed bosons recently studied in connection with

quantum groups (e.g. [51).

a). 'Physics' q-bosons

First consider the q-bosons described by Macfarlane and Biedenharn [6].

These use the definition of the generalised number, [n], recently discussed in the Physics literature

and so will be termed 'physics' q-bosons. They are characterised by the deformed commutation
relation

This can be rewritten [1] as

^N+2+l
where f(N)=
In this case, for normalizable

aa ? _ qata = q-N. (30)

aa t - f(N) ata = 1 (31)

eigenstates, the function ef,_ is negative and so noise reduction does

not take place. This is in agreement with the findings of Katriel and Solomon [12].
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b). 'Maths' q-bosons

We now consider the q-boson described by Arik and Coon [2]. This uses the generalized num-

ber function found in classical q-analysis and will therefore be termed a 'maths' q-bosom It is

characterised by the deformed commutation relation

aa t - q ata = 1 (32)

For q q (0, 1), the Jackson q-exponential E,(I_Xl 2) converges, provided eql Xl2 = (1 -q)l_l < 1.

Given this condition on A, we have normalizable q-analogue coherent states satisfying (6) in which

{1-eql Xl < _ (33)

Hence, for this type of q-boson, we do obtain noise reduction in both quadratures with respect to
the vacuum value.
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